

Всесибирская олимпиада по биологии 2022-2023.

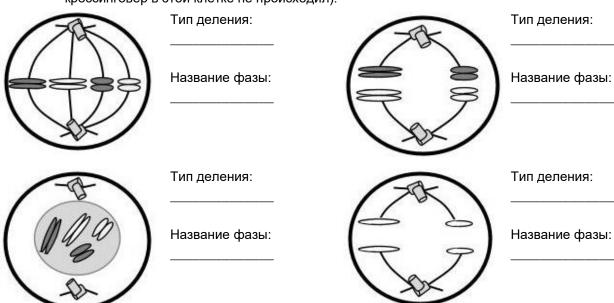
Первый этап. 16 октября 2022.

11 класс

Время выполнения задания – 4 часа.

1. Разделяй хромосомы и властвуй (20 баллов)

Некоторое гипотетическое растение отдела Мохообразные (*Bryophyta*) имеет две пары хромосом (2n = 4). На рисунке изображена диплоидная клетка этого растения, гетерозиготная по двум генам: А и В.

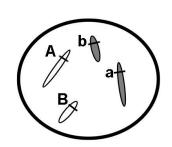

Известно, что данное растение проходит через нормальный цикл развития, характерный для отдела Мохообразные.

<u>Вопрос 1</u>. Определите плоидность (1n или 2n) следующих структур растения: коробочка, протонема, спора, архегоний, гаметы.

Вопрос 2. В результате какого типа деления образуются гаметы у этого растения?

<u>Вопрос 3.</u> Ниже представлены некоторые стадии клеточных делений, в которые могут вступать **диплоидные** клетки этого растения.

- А. Подпишите название типа деления и его фазу к каждому рисунку.
- Б. Обозначьте на каждом рисунке, где в хромосомах находятся аллели генов А и В (считайте, что кроссинговер в этой клетке не происходил).


2. «Глаза – зеркало души» (14 баллов)

- Мадемуазель, если бы вы изучали законы наследственности, вам было бы известно, что в семье, где у обоих родителей голубые глаза, не бывает темноглазых детей. Агата Кристи. «Убийство на Рождество»

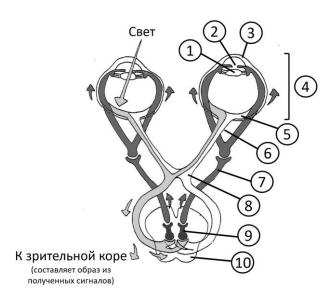
В реальности такое событие (рождение темноглазого ребенка у голубоглазых родителей) может случиться. За коричневый цвет глаз отвечает ген *OCA2*, который является транспортером L-тирозина (предшественник в биосинтезе меланина) в меланосому. Мутации в нем приводят к формированию светлой радужки. Второй важный генетический локус, наиболее ощутимо влияющий на цвет глаз, связан с геном *HERC2*, который расположен рядом с геном *OCA2*. В нем располагается подавляющий регуляторный элемент (сайленсер) гена *OCA2*. Поэтому из-за различий в локусе *HERC2* интенсивность переноса тирозина и как следствие — пигментация глаз — может отличаться у разных индивидов, даже если они обладают идентичным генотипом по гену *OCA2*. Доминантный аллель локуса *HERC2* уменьшает подавляющую силу сайленсера по отношению к гену *OCA2*, поэтому обладающие им индивиды обладают темными оттенками глаз.

Вопрос 1. Введите обозначения аллелей генов *HERC*2 и *OCA*2. Напишите возможные генотипы темноглазых и голубоглазых людей.

<u>Вопрос 2.</u> Напишите, в каком случае у голубоглазых родителей родится ребенок с карими глазами с максимальной вероятностью. Приведите схему скрещивания. Какова вероятность рождения кареглазого ребенка в таком случае?

<u>Вопрос 3.</u> Кареглазый сын, родившийся у голубоглазых родителей (из вопроса 2) вырос и находит себе голубоглазую невесту, которая является рецессивной дигомозиготой. Напишите какие дети и с какой вероятностью могут родиться у этой пары?

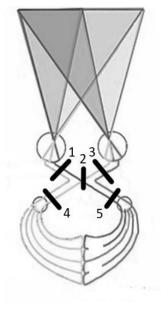
Вопрос 4. Как называется такой тип взаимодействия генов?

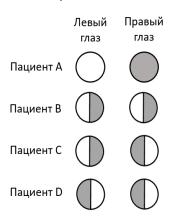

<u>Bonpoc 5.</u> В финской популяции частота встречаемости рецессивных аллелей по генам *OCA2* и *HERC2* – 0,9. Какова вероятность встречи родителей из вопроса 2 среди финнов.

3. Зрачковый рефлекс (29 баллов)

К одной из функций нервной системы относят адаптацию организма к изменяющимся условиям. Приспособление организма происходит по следующей схеме:

Читая это предложение, вы задействуете чувствительные пути зрительного нерва, затем обрабатываете поступившие сигналы, после чего формируете адаптивный двигательный ответ в виде записи в бланке ответов. По такому же принципу работают и другие реакции нервной системы. Наиболее простой пример такой реакции – зрачковый рефлекс. Его схематичное изображение представлено на рисунке ниже.


Вопрос 1. Сопоставьте названия структур и их функции с изображением рефлекторной дуги зрачкового рефлекса.


- А. Вставочный нейрон
- Б. Спинной мозг
- В. Глаз
- Г. Сетчатка
- Д. Глазодвигательный нерв
- Е. Хрусталик
- Ж. Стекловидное тело
- 3. Роговица
- И. Зрительный перекрест
- К. Склера
- Л. Средний мозг
- М. Зрительный нерв
- Н. Сосудосуживающий центр
- О. Зрачок

<u>Вопрос 2.</u> Какие номера на рисунке соответствуют чувствительной, вставочной и двигательной частям рефлекторной дуги?

Вопрос 3. Что произойдет с правым зрачком и с левым зрачком, если посветить ярким светом на сетчатку левого глаза, как показано на рисунке?

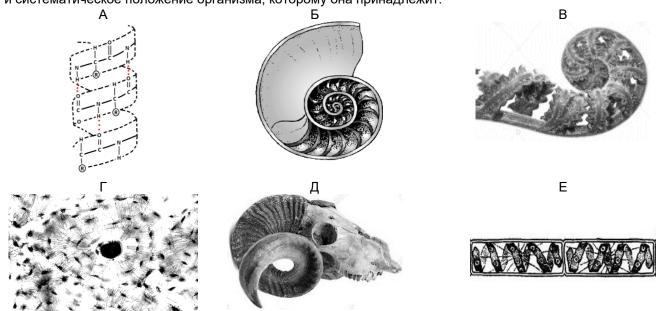
Для того, чтобы ответ нервной системы был правильным, необходима работа всех трех звеньев: чувствительного, промежуточного и двигательного. Однако часто происходят нарушения. Примеры таких проблем описаны в книге Оливера Сакса «Человек, который принял свою жену за шляпу». Его пациенты имели нормальное зрение, слух, осязание, но могли не воспринимать часть мира или неправильно интерпретировать объекты (например, путать шляпы и своих жён).

В книге описан интересный случай нарушения чувствительности: зрительной одна не правую пациенток видела половину предметов. Причиной была травма зрительного нерва. Каждый из глаз иннервируется двумя пучками волокон зрительного нерва. Один из них собирает информацию с правой половины сетчатки, другой – с левой. Дальше эта информация проходит ПО умомкап перекрещенному пути (см. рисунок) и попадает в зрительную кору, которая составляет образ из полученных сигналов. При разрыве нервного волокна проведения сигналов не происходит, поэтому какая-то часть мира игнорируется.

Вопрос 4. Вам приведено зрительное мировосприятие нескольких

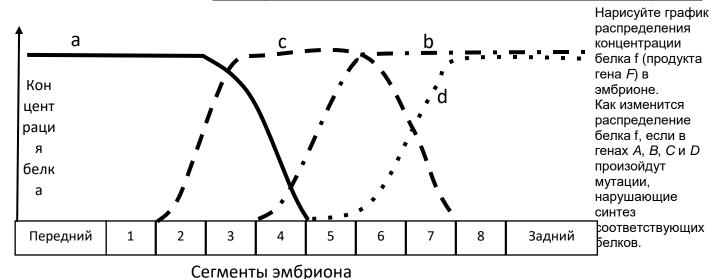
пациентов и пути передачи сенсорной информации от глаз. Темным цветом изображена часть реальности, которую испытуемый не видит. Сопоставьте картину мира человека с местом предположительного разрыва зрительного волокна на схеме.

4. Алгоритмы развития (30 баллов)

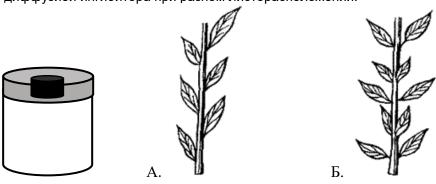

Еще в Древней Греции было замечено, что многие природные объекты обладают похожим геометрическим строением. Например, для большинства животных характерна двусторонняя симметрия, для растений — формирование фрактальных структур, а ветвление часто происходит по принципу дихотомии (разделения надвое). Геометрическое подобие организмов можно объяснить тем, что их развитие происходит по общим алгоритмам, связанных с последовательностью и скоростью клеточных делений. Наиболее просто проиллюстрировать это на примере небольшого числа клеток.

Задание 1. В каждом пункте нарисуйте, как будет выглядеть результат повторения алгоритма для ситуаций,

приведенных в таблице. Для простоты считайте структуры плоскими.

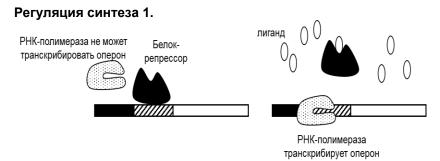

N	Алгоритм делений. Клетки могут делиться только в направлениях указанных стрелками.	Исходное состояние клеток	Конечное состояние после п- делений
A	Делиться могут клетки, контактирующие с соседними двумя гранями. Деление клеток происходит через каждые 1800 секунд в направлениях, показанных стрелками. Нарисуйте структуру, которая образуется через 1,5 часа.	←	
В	Клетка 1 и ее потомки делятся один раз в 30 минут, что в два раза быстрее делений клетки 2 и ее потомков. Объемы всех дочерних клеток равны, однако, необходимо, чтобы каждая образовавшаяся клетка контактировала с клетками 1 и 2 ряда, клетки могут менять форму (например, уплощаться). Как будет выглядеть структура через 2 часа?	1 2	
С	Способностью к делению обладают клетки, стоящие на третьей позиции от вершины цепочки (закрашена на рисунке). Другие клетки не делятся. Деления происходят с одинаковой скоростью и всегда вправо по отношению к направлению роста цепи. Клетки сохраняют контакты после делений, при этом новых контактов не образуется. Число прошедших делений n=7		

Задание 2. В природе часто встречается геометрическая форма спирали. Ниже представлено несколько примеров спиральных структур. Для каждой структуры укажите ее название, подпишите уровень организации и систематическое положение организма, которому она принадлежит.

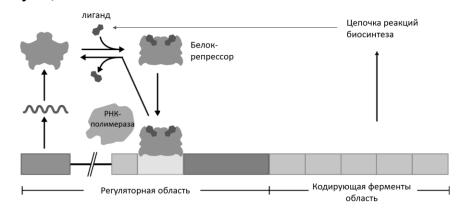


Задание 3. Ключевую роль в эмбриональном развитии организмов играет дифференцировка клеток, в основе которой лежит включение разных наборов генов в разных клетках в ответ на определенные сигналы. Паттерны экспрессии генов — регуляторов развития создают пространственную разметку эмбриона, поэтапно рисуя на нем нечто вроде чертежа будущего организма.

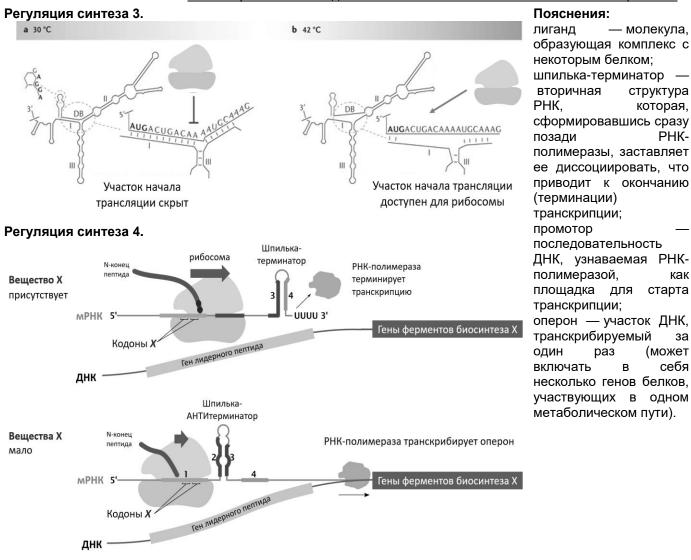
На рисунке показано распределение концентраций четырех гипотетических белков в эмбрионе Drosophila. Передний конец эмбриона показан в левой части рисунка, а задний — в правой части. Продукты генов *A* и *B* активируют экспрессию гена *F*, а продукты генов *C* и *D* — репрессируют.



<u>Задание 4.</u> При развитии побега в меристеме происходит закладка листьев. Представим себе, что у нас есть два основных регулятора роста листьев: активатор и ингибитор. Обычно активатор генерируется центральной частью меристемы (черный цилиндр) и диффундирует к краевым восприимчивым клеткам (серая часть цилиндра), а ингибитор генерируется клетками, начавшими свою специализацию в лист. Назовите тип меристемы, тип листорасположения, представленный на картинках, а также предположите что происходит с диффузией ингибитора при разном листорасположении.



5. Регуляция (18 баллов)


Регуляция синтеза 2.

Экспрессия гена — это процесс, в ходе которого наследственная информация реализуется в виде молекулы РНК или белка. У бактерий экспрессия генов регулируется разными способами. Во-первых, транскрипция гена может проходить разной интенсивностью. Во-вторых, на количество синтезируемого белка влияет время жизни мРНК этого белка и то. насколько активно транслируется мРНК рибосомами. В-третьих, определенные последовательности РНК могут образовывать альтернативные вторичные структуры, которые вызывать терминацию транскрипции или не допускать присоединение рибосомы для трансляции. Вам представлены схемы

регуляции синтеза некоторых

белков в клетке.

Вопрос 1.

Разберитесь в механизмах регуляции, представленных на схемах. Какие из перечисленных ниже белков регулируются каким способом? Обоснуйте свой ответ.

- А. Специальная сигма-субъединица бактериальной РНК-полимеразы, узнающая промоторы генов белковшаперонов. Шапероны участвуют в процессе формирования правильной пространственной структуры белков. У разных генов промоторы отличаются, и группа генов белков-шаперонов не узнается обычной сигма-субъединицей РНК-полимеразы.
- Б. Группа ферментов пути биосинтеза аминокислоты.
- В. Группа ферментов, осуществляющих катаболизм дисахарида.

Вопрос 2.

В чем преимущества регуляции экспрессии генов на уровне транскрипции, а в чем — в регуляции экспрессии на уровне трансляции? Подытожьте, когда клетке выгоднее использовать какой способ.

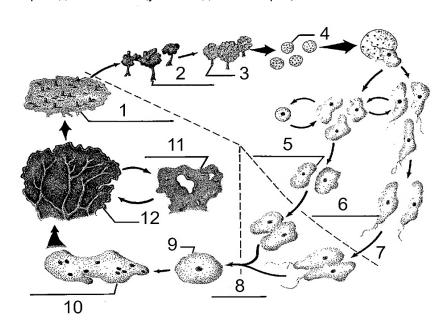
6. Умная слизь (20 баллов)

Слизевики – удивительные организмы, живущие на нашей планете! В 2019 году в Парижском зоопарке появился интересный обитатель – Physarum polycephalum представитель группы Миксомицетов (клада Amoebozoa). Этот слизевик так же обитает и в Калининградском зоопарке.

Physarum polycephalum – удобный модельный организм, который используется в различных биологических исследованиях, а также один из наиболее изученных организмов. В лаборатории Physarum выращивается на чашках Петри (рис.1), а его «излюбленным» кормом являются овсяные хлопья.

Вопрос 1. Какими свойствами должен обладать организм, чтобы его выбрали в качестве модельного для дальнейшего использования в различных биологических исследованиях? Напишите 3 свойства. Какие еще модельные организмы, помимо Physarum polycephalum, вам известны? Напишите 3 примера модельных организмов.

РНК-


как

за

себя

Рис. 1. Чашка Петри c Physarum polycephalum

Вопрос 2. Как и многие другие слизевики, *Physarum* обладает сложным жизненным циклом, состоящим из диплоидных и гаплоидных стадий. Известно, что образование спор, подобно высшим растениям, происходит в процессе *мейоза*. Гаметы могут иметь пару жгутиков, а могут быть амебоидными. Сливаясь, гаметы образуют *одноядерную зиготу*. В дальнейшем ее ядро многократно делится, а клетка увеличивается в размерах – формируется *многоядерный плазмодий* – ярко-желтая масса, видимая невооруженным взглядом! При нехватке питательных веществ многоядерный плазмодий способен переходить в покоящуюся стадию – *склероций*.

Вопрос 3. На рис. 2. представлен лабиринт, в котором находятся два агаровых блока (AG), содержащие измельченные овсяные хлопья. В лабиринт был помещен плазмодий *Physarum polycephalum*, через некоторое время он сформировал плазмодиальные тяжи практически по всему лабиринту (рис. 2. В), но, как известно, слишком длинные или тупиковые тяжи со истончаются и исчезают, временем а проложенные по наиболее оптимальному маршруту между источниками пищи, наоборот, утолщаются и продолжают функционировать. В бланке ответов изобразите, наиболее оптимальный(ые) маршрут(ы), проложенный(ые) плазмодиальными тяжами между источниками пищи, начиная с места в лабиринте, в которое поместили Physarum polycephalum.

Вам представлен жизненный цикл этого миксомицета, соотнесите стадии (процессы) жизненного цикла (1-12) с названиями (A-M) и плоидностью (1n/2n; для процессов в ячейке с плоидностью ставиться прочерк «-»).

Список названий:

- А) зигота;
- Б) склероций;
- В) амебоидная гамета;
- Г) молодой спорангий;
- Д) плазмогамия (процесс);
- Е) молодой плазмодий;
- Ж) кариогамия (процесс);
- 3) зрелый плазмодий со спорангиями;
- И) спора;
- К) жгутиковая гамета;
- Л) зрелый плазмодий;
- М) зрелый спорангий.

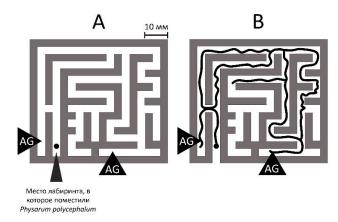
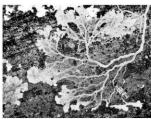


Рис. 2. Эксперимент с лабиринтом.



B. Labyrinthulomycetes

C. Amanita sp.

D. Myxomycetes (Physarum)

E. Penicillium sp.

F. Saccharomyces cerevisiae

Вопрос 4. Плазмодий – один из разновидностей талломов (тел) у грибов (в широком смысле). Помимо плазмодия (многоядерной клетки), грибные талломы могут быть представлены псевдоплазмодием (множеством слипшихся клеток, существующих какое-то время как единый организм), ризомицелием (амебоидной клеткой, корнеподобные формирующей выросты, нужные для питания и закрепления субстрате), мицелием или в дрожжевом виде. Ниже указаны представители эукариот, обладающие грибным талломом на той или иной стадии жизненного своего

Соотнесите организм (А-F) с названием таллома (1-5), который для него характерен и представлен на фотографии.

Названия талломов: 1) плазмодий; 2) псевдоплазмодий; 3) ризомицелий; 4) мицелий;5) дрожжевой таллом.

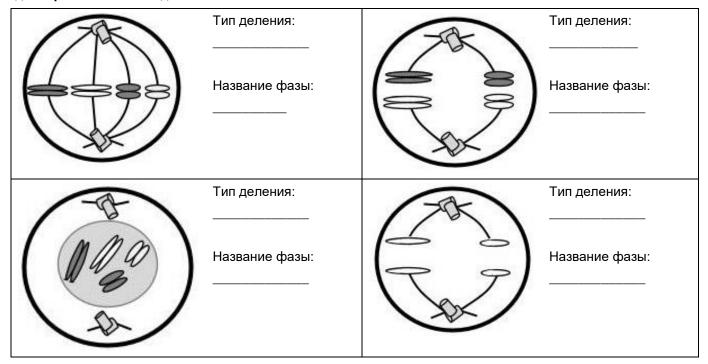
Шифр				Не пишит	е фамил	ию и имя;	шифр впишу	/т при сдаче.
Поле для п	роверяю	щих. Не г	пишите в	нём ниче	εгο.	Площадка	a	
Задание	1	2	3	4	5	6	Σ	Перепроверка
Макс.балл	20	14	29	30	18	20	131	
Баллы								
Проверил								

Всесибирская олимпиада по биологии 2022-2023. Первый этап 16 октября 2022 Время выполнения заданий – 4 часа

Класс

1. Разделяй хромосомы и властвуй (20 баллов)

Вопрос 1. Впишите плоидность (1n или 2n) для каждой структуры растения.


Структура	Коробочка	Протонема	Спора	Архегоний	Гаметы
Плоидность					

Вопрос 2. Тип деления _

(инициалы разборчиво)

Вопрос 3. В каждое из представленных ниже делений, вступала **диплоидная** клетка этого растения.

А) Подпишите название типа деления и его фазу к каждому рисунку. Б) Обозначьте на каждом рисунке, где в хромосомах находятся аллели генов А и В.

2. «Глаза – зеркало души» (14 баллов)

Вопрос 1.	
Ваше обозначение аллеля гена <i>HERC2</i>	
Ваше обозначение аллеля гена ОСА2	
возможные генотипы темноглазых людей	
возможные генотипы голубоглазых людей	
Вопрос 2. Схема скрещивания	
· ·	
Вероятность рождения кареглазого ребенка	
Вопрос 3. Схема скрещивания	
· · · · · · · · · · · · · · · · · · ·	
Какие дети и с какой вероятностью могут	
родиться у этой пары	
Вопрос 4. Как называется такой тип	
взаимодействия генов?	
Вопрос 5. Какова вероятность встречи	
родителей из вопроса 2 среди финнов	
(расчеты).	

2. Зрачковый рефлекс (29 баллов)

<u>Вопрос 1.</u> Сопоставьте названия структур и их функции с изображением рефлекторной дуги зрачкового рефлекса.

1	2	3	4	5	6	7	8	9	10

Вопрос 2. Какие номера на рисунке соответствуют чувствительной, вставочной и двигательной частям рефлекторной дуги?

Чувствительная	Вставочная	Двигательная

<u>Bonpoc 3.</u> Что произойдет с правым зрачком и с левым зрачком, если посветить ярким светом на сетчатку левого глаза, как показано на рисунке?

<u>Вопрос 4.</u> Сопоставьте картину мира человека с местом предположительного разрыва зрительного волокна на схеме.

Пациент А	Пациент В	Пациент С	Пациент D

4. Алгоритмы развития (30 баллов).

	Исходное состоян клеток	ие Конеч	считайте структуры плоским ное состояние после n-дел	і ений	
A	← <u> </u>				
В	1 ->				
С					
	дание 2.		W		
Ри	сунок Название струк	туры	Уровень организации	Систематическое организма	положение
Α					
				V	
В				Класс	
В				Отдел	
С				Отдел	

Кон цент раци я белк а
Передний 1 2 3 4 5 6 7 8 Задний
Сегменты эмбриона

Задание 3.

Мутация гена А	Мутация гена <i>В</i>	Мутация гена С	Мутация гена <i>D</i>

Всесибирская олимпиада по биологии 2022-2023. 1 этап. 11 класс. Стр. 4 из 6

Задание 4.		
Тип меристемы		
Тип		
листорасположения		
Скорость диффузии		
ингибитора по		
горизонтали		
Скорость диффузии		
ингибитора по		
вертикали		

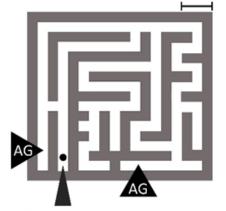
5. Регуляция (18 баллов)

Вопрос 1. Какие из белков регулируются каким способом?

Способ регуляции	Белок	Обоснование
Nº		
1		
2		
3		
4		

Всесибирская олимпиада по биологии 2022–2023. 1 этап. 11 класс. Стр. 5 из 6

Вопрос 2.


В чем преимущества регуляции экспрессии генов на уровне транскрипции, а в чем — в регуляции экспрессии на уровне трансляции? Подытожьте, когда клетке выгоднее использовать какой способ.

Преимущества регуляции на уровне транскрипции	Преимущества регуляции на уровне трансляции
Когда клетке выгоднее ис	пользовать какой способ?
на уровне транскрипции	на уровне трансляции

6. Умная слизь (20 баллов)

Стадия жизненн ого цикла	Название стадии	Плоидность (1n/2n)	<u>Bonpoc 1.</u> Какими свойствами должен обладать организм, чтобы его выбрали в качестве модельного для дальнейшего использования в различных биологических исследованиях? Напишите 3 свойства.		
1					
2					
3					
4					
5					
6					
7			<u>Bonpoc 1.</u> Какие еще модельные организмы, помимо <i>Physarum polycephalum</i> , вам известны? Напишите 3 примера модельных организмов.		
8					
9					
10					
11					
12					

Всесибирская олимпиада по биологии 2022-2023. 1 этап. 11 класс. Стр. 6 из 6

<u>Вопрос 3.</u> Изобразите, наиболее оптимальный(ые) маршрут(ы), проложенный(ые) плазмодиальными тяжами между источниками пищи, начиная с места в лабиринте, в которое поместили *Physarum polycephalum*

<u>Вопрос 4.</u> Соотнесите организм (A-F) с названием таллома (1-5), который для него характерен и представлен на фотографии.

Организм	Α	В	С	D	E	F
Название						
таллома						

Место лабиринта, в которое поместили Physarum polycephalum

На остальные вопросы дайте ответ в свободной форме.

Номер задачи пишите слева крупно и в рамке. Разные задачи отделяйте чертой.

Обязательно указывайте номера подвопросов внутри задачи.

Если вам не хватит места на основном бланке, используйте дополнительный лист.